AZAFULVENES 7¹⁾. CYCLOADDITION REACTION OF 8-AZAHEPTAFULVENE TO KETENE

Kikuo YAMAMOTO, Shoji KAJIGAESHI, and Shuji KANEMASA*

Department of Industrial Chemistry, Faculty of Engineering,

Yamaguchi University, Tokiwadai, Ube 755

8-alkyl- and 8-aryl-8-azaheptafulvenes reacted with diphenyland biphenyleneketene affording the corresponding [8+2] cycloadducts in good yields. Similarly the reactions with phenylketene gave only trans [8+2] cycloadducts.

It is known that tropone, one of the representatives of heteroheptafulvenes, generally gives Diels-Alder cycloadducts with many 2π components $^{2-5}$) but exceptionally reacts with ketene to yield unusual [8+2] cycloadducts 6 , 7). Recently troponethione was found to behave as 8π addend in the reaction with maleic anhydride and acetylenedicarboxylate 8). Furthermore the first example of cycloaddition reaction of 8-azaheptafulvene, which had yielded [8+2] or [8+4] cycloadducts to isocyanate and isothiocyanate, has been reported 9). This reaction unfortunately gave no any information on its stereochemistry because of a possible inversion around the nitrogen atom at 3-position in the cycloadduct. Several ketenes were employed here as addends to 8-azaheptafulvene with a view to making the stereochemistry of cycloadduct in this type of reaction clear and applying 8-azaheptafulvene to syntheses of new heterocycles containing a fused cycloheptatriene ring.

Three ketenes and five 8-azaheptafulvenes used in the following cycloaddition reactions were generated, not isolated, from the corresponding acyl chlorides and 8-azaheptafulvenium fluoroborates by use of triethylamine as base, respectively. Thus a solution of 8-methyl-8-azaheptafulvenium fluoroborate and diphenylacetyl chloride in dry dichloromethane was treated with triethylamine and then the resulting mixture was stirred at room temperature for 15 hrs. After usual work-up, the products were chromatographed over alumina with benzene as eluent. A colorless product 2a isolated in 78% yield was found to be a 1:1 adduct of 8-methyl-8-azahepta-

fulvene <u>la</u> to diphenylketene. The PMR spectrum is closely similar in spectral patterns for protons on the seven-membered ring to the [8+2] cycloadduct⁹⁾ of <u>l</u> to phenyl isocyanate. The IR spectrum revealed the carbonyl stretching vibration characteristic of five-membered carbonyl group at 1720 cm⁻¹. A consideration of these results indicates this product <u>2a</u> to be the [8+2] cycloadduct, 1-methyl-2-oxo-3,3-diphenyl- 1,2,3,3a-tetrahydro-1-azaazulene.

Similarly, 8-n-propyl- <u>1b</u>, 8-(p-anisyl)- <u>1c</u>, 8-(p-tolyl)- <u>1d</u> and 8-(p-chlorophenyl)-8-azaheptafulvene <u>1e</u> gave the corresponding [8+2] cycloadducts <u>2b-2e</u> with diphenylketene. These results and the PMR spectral data were summarized in Table 1 and 2, respectively. Thermal lability of 8-alkyl-8-azaheptafulvenes <u>1a</u> and <u>1b</u> would give rise to a decrease in yields of the products. On the other hand, 8-aryl homologs <u>1c-1e</u> are enough stable to be isolated¹⁰⁾ and with diphenylketene gave the cycloadducts in quantitative yields.

The reactions of 8-azaheptafulvenes $\underline{1c}-\underline{1e}$ with biphenyleneketene under the same conditions as above gave spiro [8+2] cycloadducts $\underline{3a}-\underline{3c}$ in excellent yields whose structures were confirmed on the basis of the spectral data shown in Table 1 and 2.

As a typical example of unsymmetrically substituted ketene, phenylketene was

Table l.	The	Cycloadducts	of	8-Azaheptafulvenes	to	Ketenes
----------	-----	--------------	----	--------------------	----	---------

	R	Yield (%)	a) Mp(°C)	IR(c	m ⁻¹) VC=C	Mass M ⁺ (m/e)
<u>2a</u>	CH ₃	78	108-109	1720	1630	313
<u>2b</u>	CH ₃ CH ₂ CH ₂	59	88-90	1715	1625	341
<u>2c</u>	p-CH ₃ OC ₆ H ₄	100	178	1720	1620	405
<u>2d</u>	p-CH ₃ C ₆ H ₄	100	204-204.5	1720	1625	389
<u>2e</u>	p-ClC ₆ H ₄	98	177-177.5	1725	1620	409, 411
<u>3a</u>	р-СН ₃ ОС ₆ Н ₄	93	194-194.5	1720	1630 1615	403
<u>3b</u>	p-CH ₃ C ₆ H ₄	93	204-204.5	1720	1630 1615	387
<u>3c</u>	p-ClC ₆ H ₄	90	231-232	1725	1620	407, 409
<u>4a</u>	CH ₃	48	97-98	1710	1625	237
<u>4b</u>	p-CH ₃ OC ₆ H ₄	97	152.5-153	1715	1625	329
<u>4c</u>	p-CH ₃ C ₆ H ₄	91	137-137.5	1720	1625	313
<u>4d</u>	p-ClC ₆ H ₄	93	129-130	1710	1625	333, 335

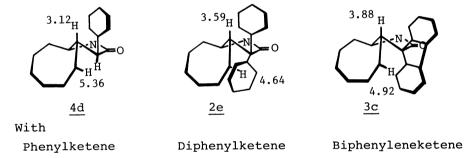

a) Yields based on the corresponding 8-azaheptafulvenium fluoroborates.

Table 2. PMR Data for Cycloadducts 2-4 in Deuteriochloroform (δ ppm)

	3-н	3a-H	4-H	5 - H	6 - H	7 - H	8-H	J _{3-3a} , Hz
<u>2a</u>		3.53 ^{br.d}	4.44 ^{dd}	5.91 ^{ddd}	6.29 ^{dd}	6.63 ^{dd}	5.61 ^d	
<u>2b</u>		3.49 ^m	$\textbf{4.35}^{dd}$	5.82 ^{ddd}	6.18^{dd}	6.53^{dd}	${f 5.52}^d$	
2c		3.60 ^m	4.61^{dd}	6.01^{ddd}	6.23^{dd}	6.57^{dd}	${f 5.52}^d$	
<u>2d</u>		3.60 ^m	4.63 ^{dd}	6.05 ^{ddd}	6.34^{dd}	6.58 ^{dd}	5.55^d	
<u>2e</u>		3.59 ^m	4.64 ^{dd}	6.04 ^{ddd}	6.37 ^{dd}	6.60^{dd}	5.56 ^d	
<u>3a</u>		3.94 ^m	4.89 ^{dd}	5.90 ^m	6.01 ^m	6.23 ^m	5.50^d	
<u>3b</u>		3.94 ^m	$\textbf{4.91}^{dd}$	5.91 ^m	6.00 ^m	6.26 ^m	${f 5.52}^d$	
3c		3.88 ^m	4.92 dd	5.94 ^m	6.02 ^m	6.25 ^m	5.50^d	
<u>4a</u>	3.85^d	3.07 ^m	5.31 ^{dd}	6.24 ^m	6.24 ^m	6.55^{dd}	5.61^d	5.0
4b	$\textbf{4.00}^d$	3.11 ^m	5.35 ^m	6.11 -	6.	51 ^m	5.44^d	5.0
4c	4.02^d	3.13 ^m	$5.35^{ extit{dd}}$	6.09 -	6.4	1 8 ^{<i>m</i>}	${\tt 5.45}^d$	5.0
<u>4d</u>	4.01^d	3.12 ^m	5.36 ^m	6.13 -	6.4	1 2 ^m	5.46 ^d	5.5

offered to this cycloaddition reaction. Thus the 8-azaheptafulvenes $\underline{1c-1e}$ having aryl group at the 8-position gave the corresponding [8+2] cycloadducts $\underline{4b-4d}$ in excellent yields as compared to the 8-methyl homolog $\underline{1a}$ which afforded $\underline{4a}$ only in 48% yield. No any changes were observed in the PMR spectra of products $\underline{4}$ before and after the purification. These spectra showed the product from the reaction with phenylketene

not to be a mixture of cis and trans [3+2] cycloadduct but either of them. The coupling constants of 5.0-5.5 Hz between 3- and 3a-H in 4 are compatible with transstructure for 4. In order to ensure this assignment of configuration, Stuart models were constructed for the products 2e, 3c and 4d which are three kinds of [8+2] cycloadducts to 8-(p-chlorophenyl)-8-azaheptafulvene le. According to the inspection by use of the models, two phenyl groups at the 3-position in 2e seem to be restricted in rotation and, consequently, 4- and 3a-H are located right just above the first benzene ring and nearly within a plane of the second one, respectively. Direct joining between the o-positions of two phenyl groups in 2e leads to the [8+2] cycloadduct 3c, in which 4-H is apart from the shielding region owing to the first benzene ring and reversely 3a-H is closely within the plane of the second ring. On the other hand, substitution of a hydrogen atom for the phenyl group trans to 3a-H in 2e leads to the trans [8+2] cycloadduct 4d.

The PMR data shown in Table 2 provided a powerful evidence in confirmation of trans structure of 4. A remarkable shift of 4-H in 4 toward lower field (0.7 to 1.0 ppm lower than $\underline{2}$) would originate in removal of the phenyl group faced to this hydrogen atom. In addition, allowed rotation of the alternative phenyl group made 3a-H in 4 shift toward higher field.

Further work should be investigated to determine the mechanism of this reaction.

REFERENCES

- 1) Part 6 of this series: K. Yamamoto, S. Kajigaeshi, and S. Kanemasa, submitted in Chem. Lett.
- 2) Y.Kitahara, I.Murata, and T.Nitta, Tetrahedron Lett., 1967, 3303.
- 3) S.Ito, H.Takeshita, Y.Shoji, Y.Toyooka, and T.Nozoe, $i\overline{bid}$, 1968, 3215.

- 4) S.Ito, H.Takeshita, Y.Shoji, Y.Toyooka, and T.Nozoe, **ibia., 1968, 3215.
 4) S.Ito, H.Takeshita, and Y.Shoji, **ibid., 1968, 1815.
 5) T.H.Kinstle and P.D.Carpenter, **ibid., 1969, 3943.
 6) J.Ciabattoni and H.W.Anderson, **ibid., 1967, 3377.
 7) R.Gompper, A.Studeneer, and W.Elser, **ibid., 1968, 1019.
 8) T.Machiguchi, M.Hoshino, S.Ebine, and Y.Kitahara, Chem. Commun., 1973, 196.
 9) Y.Yamamoto, S.Kajigaeshi, and S.Kanemasa, submitted in Chem. Lett.
- 10) K.Sanechika, S.Kajigaeshi, and S.Kanemasa, submitted in Synthesis.

(Received November 29, 1976)